
@gavofyork

JAM is a Rollup Reactor

● Secure Audited Roll-Ups (High-throughput, Low-latency)
● Multi-Modal High-Resilience Data Availability
● PVM-based:

○ Metered
○ X86 recompilable [O(n), fast]

○ LLVM/RISC-V tooling
● Transactionless with Agile Coretime

The JAM Data Topology

The JAM Anatomy

JAM: Back of the Envelope

Current performance targets for initial rollout:

● 2.06 PB Total Multi-Modal HRDA 28d @ 850 MB/s I&O

● 150,000,000,000+ EVM equiv gas/sec in-core
● 5MB/s coherence bandwidth
● 250,000,000+ EVM equiv gas/sec (fully-coherent)

Watch this space for updates and empirical results

* Not taking into account L2 tech or pre-compiles

The JAM Approach

Protocol-oriented and decentralized

GRAY PAPER

 JAM PRIZE

JAM TOASTER

The JAM Approach: The GRAY PAPER

The
GRAY PAPER

The formal specification
precedes implementation,
helping give equal
opportunities to
implementation teams and
avoiding the pit of
centralization around a
single code repository and
team.

JAM is protocol, not software

The
GRAY PAPER For more information,

visit:

https://graypaper.com/JAM is protocol, not software

GRAY PAPER
Tour

I’ll be appearing at
universities around the
world in a series of lectures
to take viewers through the
GRAY PAPER and
explain each part in depth.

A global tour of lectures to
understand JAM.

GRAY PAPER
Tour Details on dates, places and

topics coming soon!
A global tour of lectures to

understand JAM.

The
JAM PRIZE

The JAM prize is a fund
and contest launched and
underwritten by the Web3
Foundation to both help
ensure many viable impls
of JAM and to maximize
protocol expertise in and
around the community.

A resilient, decentralized
protocol requires multiple viable

implementations

The
JAM PRIZE

Prize fund: 10 million DOT

Split between several
language sets, with several
implementation tiers.

More details coming soon.

A resilient, decentralized
protocol requires multiple viable

implementations

The
JAM TOASTER

The JAM TOASTER is
a development facility
which can closely
approximate a production
network and allow for deep
analysis in a controlled
environment.

Open for use for all
implementation teams.

Facilitating a data-driven
approach for an optimally

parameterized protocol

The
JAM TOASTER

16,384 AMD TR 5 GHz cores

16 GB total L2 cache

32 TB RAM, 8 channel

20 PB secondary storage

10 Tbps ethernet switching

Facilitating a data-driven
approach for an optimally

parameterized protocol

JAM Rollout Proposal

1. Gray-Paper Publication
2. In-Principle Ratification of Approach and Scope
3. Activation of Implementation Prize
4. Optimization & Parameterization of Protocol
5. Final Ratification of JAM Protocol
6. Three Months after Three Viable Validator Impls
7. Migration, Transition and Prizes

The POLKAJAM Governance Proposal
The scope and direction of JAM as specified in the GRAYPAPER describe a protocol which shall
replace the Polkadot Relay-chain.

The Polkadot Fellows shall be responsible for ratifying, and thereby defining conformance and
performance tests for, the Polkadot JAM Protocol.

The Polkadot Fellowship shall be responsible for the development and deployment of a
replacement service for the Polkadot Relay-chain on the JAM protocol.

The Polkadot Relay-chain shall be upgraded to halt on signal from the Polkadot Fellows once it is
determined that the Polkadot JAM chain, the Polkadot Relay-chain replacement service, all
required system parachains and all requisite tooling are ready for deployment.

Readiness shall include a minimum of: a successful independent professional audit of the protocol
specification and three viable, independent and audited validator-node implementations which
pass the published conformance and performance tests for the Polkadot JAM Protocol.

Let’s JAM!

Thankyou!
 – @gavofyork

JAM Proposal: Stage 1

● Relay-chain becomes JAM chain (stop-migrate-start)
● Formal and complete protocol specification first
● Minimal complexity, solve only one problem
● Implementation prize (W3F-backed prize-fund of $100m)
● Create CoreChains service to host parachains on JAM
● Ratify protocol alteration with DOT holders
●
● Create CorePlay service for a multi-linguistic actors env.

The JAM Concept

● Input is arranged into Work Packages
● A Work Package is anchored to a recent block;
● and contains one or more Work Items.
● Work Items are refine()-ed into Work Results
● Thus a Work Package uses one core for one timeslot to be

transformed into a Work Report (containing the
corresponding Work Results)

JAM: Join-Accumulate Machine

● From CoreJam (Collect-Refine-Join-Accumulate)
● JAM is a candidate design for a future iteration of Polkadot Relay
● A new blockchain concept:

○ (What Ethereum folks might call) A “secure-rollup domain-specific chain”
○ Transactionless (no transaction distribution/pool 🎉)
○ Permissionless code- & data-hosting
○ PVM-based (a refinement of RISC-V ISA)
○ Safrole-based (a refinement of Sassafras)
○ Parachains- & Agile Coretime capable
○ Optimized network architecture & pipelined
○ Fixed parameters, non-upgradable
○ Token-hosting (u64), Staking & Coretime-sales agnostic

The JAM
Concept

The JAM Concept

● Domain-specific chain (a DSC? 😬)
● Accepts outputs of “rollups”
● Guarantees the output is correct
● Integrates output into some shared state

The JAM Concept

● Shared state is arranged into Services
● Creation of a service is permissionless
● Services have a single piece of code with 3 entry points:

○ refine: Do the rollup (mostly stateless)
○ accumulate: Integrate the output into shared state
○ on_transfer: Accept some memo/tokens from some other service

Transactionless

● No transactions.
● Still extrinsic information; five types:

○ Guarantees (reports of the output from refine computation)
○ Assurances (attestations of the availability of Work Packages)
○ Judgements (dispute outcome)
○ Preimages (lookup data which a service has requested)
○ Tickets (anonymous entries into future block production lottery)

● Minimal opinionation

Permissionless

● JAM-chain hosts services’ code, data and state
● Introducing a new service is permissionless
● Services are limited in their code, data and state only by

deposit requirements
● Example service: “Parachains” (i.e. “Polkadot 1.0”)

Service model

● Refine
○ Accepts up to 6MB of data
○ Yields up to 90KB of data
○ May execute for up to 6 seconds of PVM gas
○ Gets contextual information on other contents of Work Package
○ May make preimage lookups, invoke PVMs

● Accumulate
○ Accepts multiple outputs from Refine
○ May execute for up to 10ms of PVM gas per output
○ Stateful: may transfer funds, alter state, read other services’ state
○ May create services and upgrade its code and request preimage availability

● OnTransfer
○ Stateful: may alter state and read other services’ state

PVM-based
A refinement of the RISC-V ISA

PVM is designed to be a
simple, secure, metered,
deterministic ISA
capable of hosting
arbitrary code.

It is optimized to be
blazingly fast on real
hardware.

Safrole
-based

A refinement of the Sassafras
consensus algorithm

Safrole is a refinement of
Sassafras, a
SNARK-based consensus
algorithm providing
fork-resistant,
constant-time
anonymised block
production.

Polkadot 1.0
capable

JAM can host Polkadot 1.0
parachains

Chain PVF would be
retargeted to PVM
(which we expect to be
an official target before
launch).

Parachains
++

JAM brings key features to
parachains

JAM ushers in several
key features in the
parachains SDK
including:

No-Benchmark pallets

Accords

Full XCMP

Agile
Coretime

JAM is fully compatible with
Agile Coretime

JAM makes full use of
the Agile Coretime sales
paradigm.

The Authorization layer
allows for non-parachain
assignments of
Coretime.

Optimized
JAM does away with gossip

Quik underpins JAM
allowing an efficient m2m
topology.

Gossip is avoided within
the validator set, replaced
by robust grid-diffusal and
targeted publication
enabled by Safrole.

Pipelined
JAM enables temporal

parallelization

Unlike Ethereum and Polkadot,
JAM headers include the prior
state-root, not posterior.
Furthermore, the final 95% of
JAM’s state transition is both
parallelisable and infallible.

This allows for pipelining in
block production, enabling
block-compute times much
closer to block period.

Fixed
Permissionless services allow

JAM to fix key qualities
without sacrificing flexibility

Unlike Polkadot, JAM is a
fixed-function protocol. However,
the fixed-function pipeline is itself
Turing-complete with
PVM-invocation capability.

This allows for a much simpler core
protocol and provides substantial
opportunities for optimization.

Coretime Sales, Staking and
Parachains logic are still 100%
upgradable.

Token-
hosting,

otherwise
agnostic

JAM provides underlying
reserve functionality for DOT,
allowing its economics to be

credibly fixed

Since JAM is a fixed-function
protocol, it now becomes possible
to introduce economic guardrails to
the DOT token which a majority of
stakeholders cannot arbitrarily
alter.

It is entirely agnostic to other
protocol elements previously
hosted on the Relay-chain such as
governance, staking and
parachain-service logic.

JAM
TOASTER

A super-computer capable of hosting
JAM in its entirety: a rig for Testing,
Observation, Analysis, Scaled-Trials,

Experimentation and Research

The Polkadot Palace, an ecosystem
facility under development in
Lisbon, will play host to a 12,276
core, 16TB RAM super-computer
capable of hosting the full JAM
network in its entirely.

It will be used to do in-depth
profile, usage-simulation and
monitoring to help ensure that the
deployed JAM-chain performs to
expectations.

JAM + Substrate

Benchmarks
optional

JAM averts the need for
benchmarking code in most

circumstances

Since JAM’s PVM provides
metering for PVFs,
benchmarking becomes
much less of an issue.

Benchmarks may still be
useful for performance or
where functions may take
longer than a block of time.

XCMP
JAM requires full XCMP

Since JAM normalizes
the execution platform on
which the PVF is based,
there is no option to fudge
limits.

XCMP, which keeps PoV
sizes within sensible
limits, therefore becomes a
requirement.

Accords
JAM enables functionality

The JAM model applies
categorically less
opinionation to what cores
can be doing.

Mixed-code functionality,
as required by Accords,
becomes not only possible,
but near-trivial to
implement.

DA/ZK ready
JAM enables mixed-resource

consumption models

While JAM validators perform
a highly normalized task, work
packages may be formulated
entirely at the builder
discretion.

Different services may have
different resource envelopes
and be combined in a package
to maximize overall value of the
JAM service profile.

The Road to
JAM

The Road to JAM

● ✅ Preliminary RFCs (Sassafras, CoreJam)
● ⏳ Draft of proposal [soon!]
● ⏳ Initial implementations [soon!]
● ⏳ Open RFC for discussion and further evolution [soon!]
● 📆 Final draft and RFC [3-12 mo?]
● 📆 Ratification (Fellowship/Governance) [3-12 mo?]
● 📆 Implementations (min. 3), Substrate tooling [6-18 mo?]
● 📆 Deployment [8-20 mo?]

